
Ceramic abutments and ceramic
oral implants. An update
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A focus of interest in implant dentistry is the appli-

cation of ceramic materials for the fabrication of

implant abutments as well as for dental implants.

The ceramic materials of choice are currently alu-

mina and zirconia. The present review discusses the

available literature on the use of these ceramic

materials in implant dentistry.

Ceramic abutments

Dental implants are considered an essential treat-

ment modality. Published data have demonstrated

high success rates for implants placed in partially

edentulous arches for the replacement of both single

teeth (42, 66, 88) and multiple teeth (87, 117, 121, 163,

200). However, the use of implants to replace missing

teeth in the aesthetic zone is challenging (64, 127,

211). The restorations are subjected, especially in

patients with a gummy smile or a high lip line, to

direct visual comparison with the adjacent natural

teeth (81, 118). Perfect three-dimensional implant

positioning and well-designed superstructures are

therefore essential to mimic the appearance of a

natural tooth and to achieve an optimal aesthetic

outcome (118, 197, 209). Dental implants and abut-

ments are usually fabricated out of commercially

pure titanium, primarily because of its well-docu-

mented biocompatibility and mechanical properties

(2). However, despite numerous modifications to the

fabrication and design of metal abutments, there is

still the disadvantage of metallic components show-

ing through when such abutments are used (81, 83,

85, 126). The resultant dull grayish background may

give the soft tissue an unnatural bluish appearance

(64, 118, 209). The presence of a gray gingival

discoloration may be attributed to a thin gingival

biotype that is incapable of blocking reflective light

from the metallic abutment surface (64, 209). Gingi-

val biotype switching has been suggested when using

a metal abutment to increase the thickness of the

gingiva; this thicker gingiva will block the reflective

light from the abutment�s surface from showing

through and thus improve the aesthetic outcome (91,

104, 105, 192). Biotype switching, however, requires

an additional surgical procedure, which is unpleasant

for most patients (105). Recent years have shown a

consistent trend toward aesthetic improvements in

implant restorative materials and in treatment out-

come. To achieve optimal mucogingival aesthetics,

ceramic abutments were developed (Figs 1 and 2).

Development of ceramic
abutments

The first ceramic abutment �Ceramic Core� was

introduced in 1993 in small and large diameters (not

commercially available) (156, 157). The abutment

was a prototype of alumina ceramic with resistance

to shearing forces that reached values up to those of

the metal–ceramic crowns (130). Compared to metal

abutments, these new abutments offered optically

favorable characteristics, low corrosion potential,

high biocompatibility, and low thermal conductivity

(156). On the other hand, restorations made out of

such ceramic cores were weaker when compared to

metal–ceramic restorations (98). Such controversies

led to further investigations into new designs and

materials for ceramic abutments. Custom-made

ceramic abutments were fabricated using Alumina

blocks (InCeram�, Vita, Bad Säckingen, Germany)

and milled on a coping milling machine (Celay�,

Mikrona, Spreitenbach, Switzerland) (198). The
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abutments showed improved values for resistance to

fracture but they were still weaker than the CeraOne�

abutments (Nobel Biocare, Göteborg, Sweden) (36,

198). Another step toward perfecting the overall

aesthetic outcome was taken with the development

of the customizable CerAdapt� abutment (Nobel

Biocare). The abutment was made of pure, highly

sintered aluminum oxide and demonstrated signifi-

cantly improved resistance compared to previous

abutments (13, 158). It was indicated for the fabri-

cation of implant-supported single crowns and

short-span fixed partial dentures in both anterior and

premolar regions. Technically, an impression is taken

at the implant level. Then, the ceramic abutment can

be prepared in the dental laboratory like a die on the

master cast with water-cooled rotary instruments.

After a try-in of the abutment, the fabrication pro-

cedures of the restoration can be resumed, which will

depend on the type and material used, following the

same technique as for tooth-supported restorations.

Finally, the abutment is fixed onto the implant in-

traorally using a CeraOne� gold screw and a torque

regulator, and the final restoration can be either

conventionally or adhesively cemented. Clinical

studies have demonstrated high success rates of the

CerAdapt� abutment (12–14). Additional attempts

were made to enhance the resistance of the abut-

ment�s material by combining alumina with zirconia

(136, 164). Taking advantage of computer-aided

design ⁄ computer-aided manufacturing technolo-

gies, the zirconia abutment, which will be discussed

later in this paper, is a recent addition to the range of

ceramic abutments (209). Further design improve-

ments led to the application of a concept in which

metals were used to reinforce the ceramic abutment

(24, 27). This design was intended to provide an im-

plant abutment that presented a metal reinforcement

at the implant–abutment interface and thus provided

improved aesthetics combined with increased resis-

tance to fracture (ZiReal� abutment, 3i, Palm Beach

Gardens, FL, USA) (27).

Contemporary ceramic abutments

Today, the majority of implant manufacturers offer

ceramic abutments. The abutments are available in

pre-fabricated or customizable forms and can be

prepared in the dental laboratory either by the

technician or by utilizing computer-aided

design ⁄ computer-aided manufacturing techniques.

The materials of preference are densely sintered

high-purity alumina (Al2O3) ceramic and yttria (Y2O3)

-stabilized tetragonal zirconia polycrystal ceramics.

These high-strength ceramics have improved

mechanical properties (15, 38, 125, 180). Alumina

ceramic has a flexural strength of 400 MPa, a fracture

toughness value between 5 and 6 MPa ⁄ m0.5, and a

modulus of elasticity of 350 GPa (148). The yttria

stabilized zirconia ceramic has twice the flexural

strength of alumina ceramic (900–1400 MPa), a

fracture toughness of up to 10 MPa ⁄ m0.5, and a

modulus of elasticity value of 210 GPa (38, 148).

Compared to alumina ceramic, the enhanced

strength of zirconia (ZrO2) can be explained by

microstructural differences, such as higher density,

smaller particle size, and polymorphic mechanism

against flaw propagation (38, 67). The main reason

for the superior resistance of zirconia lies in the sta-

bilizing effect of yttria, which allows the processing of

zirconia in the metastable tetragonal crystalline

Fig. 1. Ceramic abutments (zirconia) attached to the im-

plants intraorally. Aesthetically pleasing appearance of

the soft tissue.

Fig. 2. The same situation as in Fig. 1 with the all-ceramic

crowns cemented on to the ceramic abutments.
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structure at room temperature (18�C–23�C). The

tetragonal phase at room temperature allows for

transformation to the monoclinic phase under stress

and represents an efficient mechanism against flaw

propagation. The transformation results in a com-

pressive stress as the result of volume expansion and

slows down further crack propagation, resulting in

improvement of the mechanical properties (i.e.

transformation toughening) (34, 38, 62).

Alumina abutments are composed of 99.5% pure

alumina ceramic (15). These abutments provide cer-

tain aesthetic advantages when compared to the

more whitish zirconia abutments (75, 210). In addi-

tion, the alumina ceramic is easier to prepare; this

saves time during definitive preparation, which is

usually performed intraorally (75, 210). The problems

presented by alumina abutments include their

radioopalescence at the time of radiographic exami-

nation and their weak resistance to fracture (13, 36,

198). In this context, it is commonly agreed that

ceramic abutments should show proper resistance

against the masticatory forces raised during chewing

or swallowing. Several studies reported a mean

loading force of approximately 206 N and maximum

biting forces of up to 290 N in the aesthetic zone (71,

94). For a successful restoration, the abutment should

present resistance to fracture values greater than

such forces and, to guarantee long-term success,

maintain this resistance for at least 5 years of clinical

function. A study performed in vitro compared tita-

nium-reinforced zirconia and pure alumina abut-

ments for their outcome after chewing simulation

and static loading. After fixation of the abutments

and adhesive cementing of metal crowns, the speci-

mens were exposed to 1.2 million cycles in a chewing

simulator to simulate 5 years of clinical service. The

median fracture loads were 294 N, 239 N, and 324 N

for the zirconia, alumina, and titanium abutment

groups, respectively. The authors concluded that

titanium-reinforced zirconia abutments perform in a

similar way to metal abutments, and can therefore be

recommended as an aesthetic alternative for the

restoration of single implants in the anterior region.

Ceramic abutments made of alumina showed less

favorable properties (30). However, clinical studies

using alumina abutments demonstrated excellent

aesthetic outcomes and favorable survival rates when

accepted treatment concepts were followed and

documented components were used (76). Recent

studies have shown that alumina implant abutments,

when used for the fabrication of implant-supported,

short-span, fixed partial dentures, had a cumulative

survival rate of 98.1% after an observation period of

5 years (12), whereas alumina abutments used for the

fabrication of implant-supported, single crowns had

cumulative survival rates between 93% and 100%

after observation periods between 1 and 3 years (14,

76). Clinical studies on zirconia abutments confirmed

that these abutments had a cumulative survival rate

of 100% after observation periods between 4 and

6 years (64, 65).

Ceramic abutments can be restored using all-

ceramic crown systems. The majority of clinical

studies and case reports applied glass–ceramic

crowns on alumina or zirconia abutments (65, 80,

145, 160, 209). In a study in vitro, the fracture

resistance of such restorations was evaluated (210).

Alumina and zirconia abutments were prepared and

restored with glass–ceramic crowns and placed on

Brånemark implants (Nobel Biocare, Göteborg,

Sweden). No artificial aging was applied to the test

specimens. The statistical analysis showed significant

differences between both groups, with mean fracture

load values of 280.1 N for the group with alumina

abutments and 737.6 N for the group with zirconia

abutments. The fracture resistance in the zirconia

abutment group was more than twice that in the

alumina abutment group (210). Recent developments

in computer-aided design ⁄ computer-aided manu-

facturing techniques made it possible to use high-

strength ceramics to fabricate implant-supported

all-ceramic restorations (68, 75, 143, 145, 159). The

combination of a high-strength ceramic abutment

and a high-strength all-ceramic superstructure sys-

tem would enhance the overall resistance of the

restoration. Unfortunately, no clinical data on the

success of such restorations are available. In two

studies conducted in vitro by our group, the fracture

resistance of different implant-supported, all-cera-

mic restorations was evaluated and compared after

chewing simulation and static loading. Ninety-six

implants with an internal connection design

(Replace�, Nobel Biocare) were divided into one

control group and two test groups of 32 specimens

each. Implants in the control group received tita-

nium abutments whereas the implants of the test

groups received Procera alumina abutments and

Procera zirconia abutments (both Nobel Biocare,

Göteborg, Sweden; Fig. 3). The abutments were pre-

pared to receive standardized maxillary central inci-

sor all-ceramic crowns (analog tooth 21); half of each

group received Procera alumina crowns while the

other half received Procera zirconia crowns. The

specimens were exposed to 1.2 million cycles in a

chewing simulator to simulate 5 years of clinical

service. The median fracture loads after aging were
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1454 N, 1251 N, 423 N, 241 N, 444 N, and 457 N for

titanium abutment ⁄ alumina crown, titanium abut-

ment ⁄ zirconia crown, alumina abutment ⁄ alumina

crown, alumina abutment ⁄ zirconia crown, zirconia

abutment ⁄ alumina crown, and zirconia abut-

ment ⁄ zirconia crown combinations, respectively.

The highest fracture resistance value was found with

the titanium abutment ⁄ alumina crown combina-

tion, whereas the smallest fracture resistance was

found with the alumina abutment ⁄ zirconia crown

combination. We concluded that all the abut-

ment ⁄ crown combinations tested have the potential

to withstand physiological occlusal forces in the

anterior region (19, 20). Compared with a previous

in vitro study (210), it was obvious that the restora-

tions in our study had significantly smaller values.

The differences in the resistance to fracture, espe-

cially in the zirconia abutment groups, could be ex-

plained by the aging effect through environmental

stresses on the abutments (abutment grinding,

chewing simulator including low temperature

hydrothermal degradation) (43, 48, 106, 107, 115).

Temperature peaks could alter the metastable

tetragonal crystalline phase of the zirconia ceramic

and there is controversy over whether this would lead

to a reduction in the fracture resistance of the

material (35, 48, 67, 122). Like other ceramics, zirco-

nia is sensitive to changes in humidity and temper-

ature, which is a particularly important issue when

prosthetic applications are considered. Long-term

exposure of zirconia ceramics to humidity and

thermal cycling leads to a slow, low-temperature

degradation of the material that might not become

significant before several years have passed (128, 182,

193).

Conclusion and future
developments

The diversity of contemporary materials and of

methods available for the fabrication of implant-

supported, all-ceramic restorations makes it difficult

to select the most appropriate treatment modality.

New products are constantly being added to the wide

range of existing products. For example, efforts are

being made to produce low-temperature, degrada-

tion-free zirconia–alumina composites for dental

implant abutments (96, 97). The first short-term

results are encouraging (95).

In addition to correct diagnosis and treatment

planning, recognizing the properties, long-term

behavior, indications, and contraindications of each

material used are essential to guarantee the long-

term clinical success of the restoration. Both in vitro

and in vivo studies show that the indication for

ceramic abutments is restricted to the fabrication of

single-tooth, implant-supported all-ceramic restora-

tions. Enhancing the resistance of the abutment will

expand its application to implant-supported, all-

ceramic, fixed partial dentures and restorations in the

posterior region. Zirconia ceramics and abutments

are being intensively investigated and are gaining in

popularity. Future improvements in the ceramic will

focus on its color and long-term stability. Attempts

are being made to add coloring oxides to zirconia

ceramic before the sintering process; this would

change its whitish color and enhance the aesthetic

outcome. It remains important, however, to verify the

effectiveness of a suggested method before its rec-

ommendation.

Advances in computer-aided design ⁄ computer-

aided manufacturing technologies, which have made

the fabrication procedures of ceramic abutments and

implant-supported, all-ceramic restorations faster,

easier, and more efficient, are playing a major role in

the growing use of ceramic abutments. Future

developments will make it possible to produce more

resistant abutments and restorations with higher

quality and lower fabrication time and costs. Here, it

should be noted that the lifetime of any dental

ceramic material may be limited because of accu-

mulating damage from the oral function (90).

Ceramic implants

Forty years ago, oral implants appeared on the mar-

ket for clinical use. A variety of forms, materials, and

Fig. 3. Zirconia (left) and alumina (right) dental abutment

with a metal base.

227

Ceramic abutments and implants



surface treatments evolved, some more and some less

for the benefit of the patients. Today, the endos-

seous-cylinder ⁄ screw surface textured type of

implant, made from commercially pure titanium, is

considered the gold standard for the fabrication of

oral implants. Titanium is applied in many fields

of dentistry because of its biocompatibility, high

corrosion resistance (92), and good mechanical

characteristics. Commercially pure titanium has been

used as an implant substrate (1, 10), as well as

material for implant abutments, for many years.

Numerous investigations have demonstrated the

reliability of this material for both mid- and long-

term use (1, 28, 77, 84, 86, 116, 200). There are some

concerns that titanium might provoke unwelcome

host reactions, but little evidence is available (199).

Tschernitschek et al. (199) found that titanium �…can

also cause chemical–biological interactions. Tissue

discoloration and allergic reactions in patients who

have come in contact with titanium have been re-

ported.� A small number of investigations showed

increased titanium concentrations close to titanium

implants (23) and in regional lymph nodes (205). An

investigation reported on titanium implant failures of

which more than half were, according to the authors,

the result of toxic metal ions released from the

superstructure (207). In an investigation evaluating

tissues from patients who underwent a revision of

their hip-joint replacements, Lalor et al. (113) sug-

gested a sensitization to titanium because monoclo-

nal antibody labeling showed macrophages and T

lymphocytes in the presence of titanium particles.

However, it should be mentioned that the clinical

relevance of these findings is not clear. One fact,

however, is that patients – perhaps because of more or

less scientific reports in the lay press, which considers

metals to be harmful to the body – rely on natural

health and holistic medicine where a freedom of

metal contamination is part of the philosophy. With

implant components produced from ceramic mate-

rials, it will be possible to render the option of metal-

free treatment to patients asking for such an option.

Ceramic materials are frequently used in dentistry.

The application ranges from veneering material for

metal substructures, through all-ceramic posts and

cores towards frameworks for crowns and bridge-

work. Ceramics are highly biocompatible and may

improve the aesthetic appearance of dental recon-

structions. Furthermore, it is well-known that cera-

mic materials are less prone to plaque accumulation

than metal substrates (47, 162, 169).

Ceramic implants in dentistry are not new. Sand-

haus (166) was one of the first to report on aluminum

oxide ceramic implants (CBS = the Crystalline Bone

Screw). However, the Crystalline Bone Screw showed

a success rate of only 25% after an average observa-

tion period of 5 years (190). In 1987, Sandhaus (167)

introduced the Cerasand (Incermed, Lausanne,

Switzerland) ceramic implant but unfortunately there

are no long-term data on its clinical behavior. To the

knowledge of the authors, neither of these ceramic

implants is available on the market any more. In

1976, Schulte & Heimke (176) introduced the alumi-

num oxide Tübingen implant (Frialit I; Friadent,

Mannheim, Germany) for immediate implant place-

ment in the anterior area. Besides clinical reports on

this implant system (29, 60, 142, 170–175, 177, 178,

204), there are also scientific data available on the

long-term behavior of this system (44, 49–51, 212,

213). Investigations showed that this material inte-

grated well into bone and soft tissue (16, 29, 212, 213).

D�Hoedt (49) reported on 924 Tübingen implants in

631 patients after approximately 10 years. A success

rate of 92.5% was presented since the routine phase

of 1982. There was no report in that investigation on

the entire success rate from 1975 until 1985. In a

subsequent comparative investigation, d�Hoedt &

Schulte (51) reported the results from 1982 to 1987

and showed that only two of the 448 rehabilitations

were not successful; 396 rehabilitations were suc-

cessful with a 95% confidence limit of 85–92% for the

success rate. No information was provided for the

remaining 50 samples. No clear information could be

drawn on implant success rate from that investiga-

tion. However, De Wijs et al. (45) presented a clinical

evaluation over a 10-year period for 127 Tübingen

implants. In 101 patients, implants were placed in the

maxillary incisor, canine, and premolar regions. The

authors found an overall survival rate in their inves-

tigation of 87% with a mean follow-up of 4.5 years.

Since the Frialit polycrystalline aluminum oxide

implant system did not meet the expectations in

terms of long-term stability, it was withdrawn from

the market and eventually replaced by the titanium

Frialit-II system (Friadent, Mannheim, Germany).

Another aluminum oxide implant system was the

Bionit implant, which was developed by Müller,

Piesold, and Glien (139, 151, 153). However, there is

only limited information from laboratory investiga-

tions (150, 152, 153) and no information from clinical

investigations regarding the (long-term) behavior of

this implant system. The authors do not know

whether this implant system is still available on the

market.

Much more scientific support exists for single-

crystal alumina (sapphire) oral implants. Numerous
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single-crystal alumina oral implants (131, 132, 134,

135) have been placed over the last 20 years in animal

(7, 8, 55, 72, 131, 133, 188) and clinical (54, 56, 57,

108–111, 185–187) investigations. This material

proved to be biocompatible (214). One commercially

produced single-crystal oral implant was the Bioce-

ram implant by Kyocera (Kyoto, Japan). Koth et al.

(111) and Steflik et al. (187) reported 5- and 10-year

results of the single-crystal sapphire (alumina)

threaded cylindrical endosteal oral Bioceram im-

plants. Twenty-eight implants were placed in the

lower jaws of 17 patients. Six weeks after implant

insertion, 23 implants were included into fixed

prostheses as distal abutments. Twenty-one of the 23

implants could be recalled after 10 years. The authors

reported a success rate of 81%. It is noteworthy that

these two investigations were included in a system-

atic review on the survival and complication of tooth–

implant-supported fixed partial dentures (114). The

estimated survivals in that review were 75.7% and

64.7% after 5 and 10 years, respectively, demon-

strating survival rates lower than those of titanium

implants in the same review. A further report on the

long-term behavior of these sapphire implants was

presented by Fartash & Arvidson (54). They reported

on the treatment of total or partial edentulism with

fixed prosthodontics supported by Bioceram sapphire

implants. The implant system performed well in the

lower jaw and in partial edentulism. This investiga-

tion was also included in the above-mentioned sys-

tematic review (114); the 10-year results showed an

estimated survival of 100% for combined tooth–

implant reconstructions. The same investigation by

Fartash & Avidson (154) was included in a second

systematic review by the same group that included

only implant-supported fixed partial dentures. The

estimated survival for the Bioceram implants was

96.6%. The results were similar (implant-supported)

or better (implant–tooth-supported) when compared

to those of titanium implants.

Another report on sapphire implants (Bioceram)

used to support mandibular overdentures was pre-

sented by Berge & Gronningsaeter (22). They showed

the results from 30 patients who had been treated

between 1984 and 1991 and reported a cumulative

survival rate for the implants of 69% over a mean

observation time of 11 years. The authors concluded

that the long-term results with this implant system

for the use of mandibular overdenture support were

inferior to those with other systems.

Except for the investigation by Fartash & Avidson

(54), the single-crystal alumina implant showed

inferior results to titanium implants, which might be

why this implant system was not as accepted as

titanium implants. According to the manufacturer,

the sapphire oral Bioceram implant is no longer

produced.

Although it might be common sense that alumina

is prone to fracture because of its brittleness, low

fracture strength, and long-term aging, fracture was

only mentioned once as the reason for the loss of a

maxillary posterior implant in the long-term investi-

gations mentioned above (54). Therefore, the reason

for the withdrawal of some of the alumina implant

systems from the market remains unclear. It can be

assumed, though, that the anxieties raised by dentists

that ceramic implants are prone to fracture might

have played a role. There was therefore a search for

tougher ceramic materials for use as an oral implant

substrate instead of alumina. The ceramic of choice –

it has already been in use in orthopedics since the

1990s (31, 37, 39) – seems to be zirconia. Zirconia was

introduced into dentistry in the 1990s and is currently

being used as the material for posts for tooth build

up, for frameworks for crown and bridgework, and for

implant abutments (3, 4, 9, 17, 18, 26, 27, 53, 63, 64,

78, 79, 93, 100, 112, 123, 124, 137, 147, 155, 165, 189,

191, 193–196, 202, 203, 209, 210).

Cell culture testing of zirconia

Since zirconia is of certain interest in orthopedics

and implant dentistry, its biocompatibility towards

bone and soft connective and epithelial tissue is

essential. To determine the biocompatibility or

interactions at the biomaterial–tissue interface stud-

ies in vitro using cell cultures provide an important

tool (Fig. 4A, B) (138). Advantages of such studies

include the isolated, homogeneous nature of the

culture system, a defined temporal course of events,

relatively limited expense, the reproducible growth of

multiple cultures, and reduced animal morbidity and

mortality (40).

While early in vitro studies were performed with

zirconia in powder form, co-cultured mostly with fi-

broblasts or lymphocytes – well-summarized in the

reviews by Piconi et al. (148, 149) – newer experi-

ments focused on osteoblasts and compact zirconia

substrates (Table 1). Josset et al. (89) tested prolifer-

ation, and total protein and DNA content of human

osteoblasts on zirconia and alumina disks with ref-

erence to control cells cultured on glass coverslips

(89). They found that neither material altered the cell

ploidy or the cell growth rate, which was in accor-

dance with the absence of any inducing effect on

DNA synthesis or proliferation. In vitro studies using
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human osteoblasts are considered to be of particular

interest because these cells are involved in the tissue

reaction at the implant site in patients (129, 161). The

effect of zirconia, alumina, and titanium on the

expression and secretion of the matrix metallopro-

teinases MMP-2, MMP-9 and their natural tissue

inhibitors TIMP-1 and TIMP-2 by primary human

osteoblasts was studied by Oum�hamed et al. (146).

Matrix metalloproteinases (MMPs) are a family of

proteolytic enzymes that are capable of degrading all

the major components of the extracellular matrix

(140). Their activities can be regulated by natural

specific inhibitors (tissue inhibitors of metallopro-

teinases, TIMPs). A balance between MMPs and

TIMPs is necessary for many physiological processes

and an imbalance can result in a number of patho-

logical events (32, 46, 141). MMPs play an important

role in the development of osteolysis and implant

loosening (120, 141). Zirconia did not have a signifi-

cant effect on MMP-2 messenger RNA expression and

even decreased MMP-9 expression. Whereas TIMP-2

levels were very low in this experiment, TIMP-1 in-

creased to a maximum level at 48–72 hours. In their

biomolecular study Carinci et al. (33) determined the

genetic effect of zirconia on an osteoblast-like cell

line (MG63) using microarray slides with 19,200 dif-

ferent oligonucleotides. Several genes were identified

of which the expression was either up- or down-

regulated. It was shown that zirconia was able to

modulate immunity, vesicular transport, and cell

cycle regulation. The authors suggested that the

regulation of immunity may positively affect the

foreign body reaction in vivo, allowing for a close

apposition of bone, as found in histological studies

(5, 6, 52, 82, 168, 179). Furthermore, it was concluded

that the regulation of vesicular transport and cell

cycle mechanisms might produce modifications in

the turnover of extracellular matrix and in the pro-

liferation of osteoblasts. Using another approach, the

effect of zirconia surface property modification on

human fetal osteoblasts was analyzed (69, 70). Car-

bon dioxide laser treatment was applied on magnesia

partially stabilized zirconia (69) and yttria partially

stabilized zirconia (70). The surface of the magnesia

partially stabilized zirconia was roughened and the

polar component of the surface energy was enhanced

by the laser treatment, resulting in an increased

number of cells attaching and spreading compared to

the untreated control. In contrast, the surface of yttria

partially stabilized zirconia was smoothed by carbon

dioxide laser irradiation. Nevertheless, cell attach-

ment was also increased, probably as a result of

surface energy enhancement, i.e. alterations in the

wettability characteristics. A recent investigation

evaluated differently roughened yttrium-stabilized

tetragonal zirconia polycrystal samples using the

CAL72 osteoblast-like cell line (21). This investigation

showed that there was no difference in cell prolifer-

ation between the different materials and surfaces

later in the culture. From their results the authors

concluded that the yttrium-stabilized tetragonal zir-

conia polycrystal material used might be an appro-

priate substrate for the proliferation and spreading of

osteoblastic cells.

Further studies in vitro are required to understand

the behavior of osteoblasts on zirconia substrates

more comprehensively. So far, little is known about

the effects of zirconia on gene ⁄ extracellular matrix

protein expression patterns (183) and healing-spe-

cific enzyme kinetics. Since surface topography has

proven to be one of the key factors in bone–titanium

integration (208), this may be another field that needs

to be addressed in future studies.

A

B

Fig. 4. Scanning electron microscopy images of primary

human osteoblasts cocultured with zirconia; (A) machined

substrate surface, (B) rough, air-borne particle abraded

substrate surface.
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Zirconia oral implants

Zirconia was applied relatively early as a coating

material for oral implants in animal investigations. In

1975, Cranin et al. (41) used zirconia flame-spray-

deposition-coated Vitallium implants in beagle dogs.

They showed that five of nine zirconia-coated im-

plants were surrounded by connective tissue and that

the results were not satisfactory. In a histological

interface analysis of titanium and zirconium bone

implants, Albrektsson et al. (11) observed a fibrous,

tissue-free zone with a 20- to 40-nm thick proteo-

glycan layer at the titanium implants. At a distance of

approximately 100 nm, collagen bundles were de-

tected. The proteoglycan zone at the zirconia-coated

implants showed a thickness of 30–50 nm and the

collagen fibers were further apart from zirconia

compared to titanium. From these two earlier inves-

tigations, it could be concluded that zirconia might

not be an adequate alternative to titanium for im-

plant fabrication. Further investigations in the early

1990s (73, 74) compared the biocompatibility of

alumina, zirconia, and stainless steel in dogs. In

several experiments it was shown that the affinity of

bone towards the different materials was not differ-

ent. However, the authors reported on thin inter-

vening fibrous membranes between the bone and the

implants. There was no detailed description of the

kind of soft tissue that was found.

In a histomorphometric study in rats, Fini et al.

(58) evaluated implants of different materials placed

in the femur (hydroxyapatite, titanium alloy, yttrium

partially stabilized zirconia, alumina, and two bio-

logical glasses). In non-ovariectomized rats there

were no significant differences regarding the affinity

index of bone towards the different implant materials

(hydroxyapatite 77.0%, zirconium 58.2%, titanium

alloy 61.2%).

Summarizing the results of later investigations, it

seems that the bone integration of zirconia has im-

Table 1. Summary of cell culture studies involving compact zirconia substrates

Reference Material Cell type Test Main findings

Josset et al. (89) Zirconia

Alumina

Glass

Primary human

osteoblasts

Cell proliferation

Total protein synthesis

Cell morphology

Evidence of osteoblastic

proteins

Carcinogenicity

(DNA image cytometry

Ag-NORs

quantification)

No adverse response

Oum�hamed

et al. (146)

Zirconia

Alumina

Titanium

Primary human

osteoblasts

Expression analysis of

MMP-2, MMP-9,

TIMP-1, TIMP-2

No effect on MMP-2,

decrease of MMP-9,

increase of TIMP-1

Carinci et al. (33) Zirconia Osteoblast-like

MG63 cells

Gene expression

analysis (DNA

microarray)

Modulation of

immunity, vesicular

transport, and cell cycle

regulation

Hao et al. (69) Zirconia*

(MgO-PSZ)

Human fetal

osteoblast cells

(hFOB 1.19)

Surface analysis

Cell proliferation

Cell adhesion

Increase of cell

attachment and

spreading by surface

treatment

Hao et al. (70) Zirconia*

(Y-PSZ)

Human fetal

osteoblast cells

(hFOB 1.19)

Surface analysis

Cell adhesion

Increase of cell

attachment by surface

treatment

Bächle et al. (21) Zirconia

(Y-TZP)

CAL72

osteoblast-like

cells

Cell proliferation

Cell morphology

Cell-covered surface

area

No adverse response

Similar cell proliferation

of different substrates

*Carbon dioxide laser irradiation.

Ag-NOR, argyrophilic nuclear organizer region; MgO-PSZ, magnesia partially stabilized zirconia; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of
metalloproteinases; Y-PSZ, yttria partially stabilized zirconia; Y-TZP, yttria partially stabilized zirconia.
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proved and is no longer different to that of titanium

(59, 119, 168, 179). This might be because of refine-

ments made in the preparation and production of

zirconia materials.

Akagawa et al. (6) were the first to report the use of

oral implants made of zirconia in beagle dogs. In

their experiment they evaluated loaded (1 week

after implant placement) and unloaded zirconia

dental implants. Histology was performed 3 months

after implant placement. The authors reported that

no implant was mobile and no fracture occurred

during the experiment. Direct bone apposition to the

implant could be observed in both treatment groups.

The bone-to-implant contact ratio was 81.9% for the

Fig. 5. En-face photograph of a patient participating in

the clinical investigation on zirconia implants.

Fig. 6. Overview (retracted lips). Tooth 12 (FDI nomen-

clature) is restored with an insufficient crown which had

to be re-cemented several times.

Fig. 7. Close-up of Fig. 6. Marginal gingival inflammation

is visible. The papillae towards the neighboring teeth are

present.

Fig. 8. A periapical radiograph showing an apical radio-

lucency (result of an apicectomy) as well as a transdental

fixation. The crown is insufficiently attached to the tooth

with an endodontic post.
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nonloaded implants and 69.8% for the loaded group

and the loaded group showed more loss of marginal

bone than the nonloaded group. Unfortunately, no

titanium control group was included for comparison.

In a second investigation, Akagawa et al. (5) com-

pared entirely implant-borne reconstructions with

implant–tooth-connected restorations in monkeys.

Again, implants fabricated from partially stabilized

zirconia were inserted into the mandibles of eight

monkeys and 3 months later three different types of

superstructures were provided (single crowns on

Fig. 9. The tooth was extracted with caution so as not to

damage the soft and hard tissues. After tooth extraction,

there was an alveolar defect of the buccal bone, which was

treated according to the guided bone regeneration prin-

ciple and with a soft connective tissue graft in the same

session (treatment not shown).

Fig. 10. Initial drilling with a 2-mm twist drill and a

direction aid.

Fig. 11. Subsequent enlargement of the implant osteoto-

my with the respective drills.

Fig. 12. Insertion of the ceramic implant.

Fig. 13. Placement of the implant to the correct depth so

that only the implant head is visible.
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implants, implant-borne connected restorations, or

implant–tooth-supported reconstructions). Clini-

cally, there were no differences between the groups.

Histology was performed after 12 and 24 months.

Direct bone apposition was observed in all groups.

Histomorphometry showed bone-to-implant contact

between 66 and 81%. In general, there was no sig-

nificant difference between the different treatment

groups.

Our group was the first to compare loaded titanium

implants with loaded zirconia implants in the same

model (103). Twelve custom-made titanium and 12

zirconia implants were inserted in the upper anterior

jaw of six monkeys. Six months after implant instal-

lation single crowns were fabricated and inserted on

all implants. Five months after crown installation (i.e.

the loading time) the implants, with their soft and

hard tissues, were harvested and evaluated micro-

scopically. No implant was lost over the observation

period. There were no statistically significant differ-

ences in the soft tissues around the titanium and

zirconia implants and no differences in respect to the

bone-to-implant contact between the two materials

(titanium 72.9%; zirconia 67.4%). The surface treat-

ments used to change the surface topography for the

titanium implants included air-borne particle abra-

sion and acid etching. The zirconia implants, how-

ever, were only air-borne particle abraded because

acid etching had no effect on zirconia (unpublished

data). So far, air-borne particle abrasion has been the

Fig. 14. Adaptation of the temporary to the clinical situ-

ation and subsequent relining.

Fig. 15. The provisional is cemented with temporary

cement at the end of session.

Fig. 16. Standardized periapical radiograph after implant

placement showing the implant position in the mesio-

distal and apicocoronal direction.

Fig. 17. Clinical appearance 13 weeks after installation of

implant. Marginal soft tissue overgrowth made it neces-

sary for a minor gingivectomy to be performed at the peri-

implant mucosal margin.
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method of choice for increasing the surface rough-

ness of zirconia. However, Sennerby et al. (181)

developed a technique that was different to air-borne

particle abrasion to achieve a porous surface. They

coated zirconia implants with slurry containing zir-

conia powder and a pore-former. While sintering the

coating the pore-former was burned and a porous

surface was the result. Their topographic analyses

showed that the zirconia implant surface modified in

this way resembled the well-known TiUnite� surface

(Nobel Biocare, Goteborg, Sweden). The authors

installed threaded zirconia implants with either a

machined surface or one of two surface modifica-

tions into the tibia and femur of rabbits. Oxidized

titanium implants served as controls. Removal torque

tests showed higher values for the surface-modified

zirconia implants than for the titanium implants. The

lowest values were found for the machined zirconia

implants. However, no significant differences

regarding bone-to-implant contact and bone area

filling could be observed between the different

treatment groups. Another two animal investigations

showed that zirconia implants undergo osseointe-

gration and that a rough surface is of benefit (61,

184).

Biomechanical investigations on zirconia oral

implants are rare in the literature. In a three-

dimensional finite element analysis, the stress dis-

tribution patterns of implants made of commercially

pure titanium and yttrium partially stabilized zir-

conia were analyzed. Two three-dimensional finite

element analysis models of a maxillary incisor with

Re-Implant (Hagen, Germany) implants (99) were

made, surrounded by cortical and cancellous bone.

A porcelain-fused-to-metal crown for the commer-

cially pure titanium implant and a ceramic crown

for the yttrium partially stabilized zirconia implant

were modeled and the stress levels were calculated

according to von Mises criteria. Yttrium partially

stabilized zirconia implants had similar stress dis-

tribution to commercially pure titanium implants

(102). In another investigation by our group on

biomechanical behavior, two groups of two-piece

zirconia implants were tested in the artificial mouth

(101). The implants restored with Procera crowns

seemed possibly to fulfill the biomechanical

Fig. 19. Situation with retracted lips. The dental and soft

tissue symmetry is not perfect when tooth 12 is compared

to tooth 22 but the overall result is satisfactory.

Fig. 20. Standardized periapical radiograph after crown

placement.

Fig. 18. Close-up of the final restoration with the clinical

appearance of the red and white aesthetics. Slight reces-

sion of the interdental papillae can be observed.
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requirements for anterior teeth, showing mean

fracture loads of the crowns of 575.7 N when not

artificially loaded and 555.5 N when aged in a

chewing simulator for 1.2 million cycles. Further

testing in vitro (i.e. artificial mouth) mimicking

long-term clinical service would surely be of benefit

to obtain additional information on the long-term

fatigue behavior of zirconia implants.

Although there have been reports of problems with

zirconia (e.g. increased fracture rate of hip prosthe-

sis), which occurred some years ago in orthopedics

(34, 206), the zirconia production process for medical

applications is currently one of the best-controlled

fabrication processes in industry. High reproducibil-

ity and constant production chains seem to ensure

a high quality of zirconia products for medical

applications so zirconia appears to be the ceramic

material of choice for metal-free reconstructions in

implant dentistry.

However, regarding the clinical use of zirconia

oral implants, scientific information is lacking. To

the authors� knowledge there are only two clinical

patient case reports using zirconia implants and

two retrospective observational case series pub-

lished in the international literature. The first report

on the application of a zirconia implant – crown

system in a patient dated from 2004 (100). The

authors used a custom-made two-piece dental

implant to replace a left upper central incisor. After

an unloaded healing period of 6 months, abutment

connection was performed using a pre-fabricated

zirconia abutment, which was cemented to the

implant with Panavia (Kuraray, Osaka, Japan). The

implant was subsequently restored with a zirconia-

based single crown. A second report presented a

patient case in which eight, one-piece zirconia

implants had been placed. After implant placement

the patient had to wear a protective splint over a

6-month period for 24 hours a day. After that time

the implants were restored with zirconia crowns

(201). There was, however, no follow-up presented

on either of the two reports.

Two clinical retrospective case series were reported

by the developers of two different zirconia ceramic

implant systems (25, 144). However, because of bias

the scientific value of these reports is questionable.

Furthermore, the authors did not clearly state the aim

of their investigation nor the inclusion or exclusion

criteria used. No additional parameters (radiographic

bone remodelling, soft tissue health, mobility) were

evaluated. The only result that was reported was the

�survival� rate in per cent. The level of evidence in

these two clinical reports might therefore be regarded

as very low.

There are currently five zirconia implant systems

commercially available. Sandhaus, again, was the

first to develop a zirconia implant system in 1987: the

SIGMA implant system (Incermed, Lausanne, Swit-

zerland). Further zirconia implant systems are the

Ceraroot system (Ceraroot, Barcelona, Spain), the

White Sky system (Bredent Medical, Senden, Ger-

many), the z-systems implant system (z-systems,

Konstanz, Germany), and the zit-z ceramic implant

system (Ziterion GmbH, Uffenheim, Germany).

However, there are no data on the histological and

biomechanical behavior of these different implant

systems in the international literature. Furthermore,

no scientific short-, middle- or long-term clinical

data on the above-mentioned zirconia implant sys-

tems can be found.

The only prospective ongoing clinical evaluation

on zirconia implants of which the authors are aware

is on a one-piece yttria-stabilized tetragonal zirconia

polycrystal reinforced with alumina implant with an

implant surface modification similar to that pre-

sented by Sennerby et al. (181). This investigation is

Fig. 21. Final facial photograph shows a harmonic smile.
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being performed at the Department of Prosthodon-

tics at the University of Freiburg, Germany. So far, 92

patients have received 119 implants: 65 patients

received one implant (Figs 5–21) and 27 patients

received two implants each for a three-unit bridge.

All implants were immediately temporized with

composite temporary crowns or bridges. After an

observation time of up to 1 year four implants have

so far been lost, giving a cumulative survival rate of

96.6%. Besides clinical measurements, aesthetic

measurements are also being performed, and bone

modeling ⁄ remodeling will be evaluated using stan-

dardized radiographs.

Since the clinical use of zirconia implants lacks

scientific support, the authors do not currently rec-

ommend their use. Prospective clinical investigations

are needed before these implant systems can be

recommended for clinical use.
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Fünfjährige Erfahrungen. Dtsch Zahnärztl Z 1981: 36:

544–550.

172. Schulte W. The intra-osseous Al2O3 (Frialit) Tuebingen

Implant. Developmental status after eight years (I–III).

Quintessence Int 1984: 15: 1–39.
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Quintessenz 1976: 27: 17–23.

177. Schulte W, Kleineikenscheidt H, Lindner K, Schareyka R.
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of zirconium oxide bridges in the posterior segments

fabricated with the DCM system. Schweiz Monatsschr

Zahnmed 2000: 110: 131–139.

192. Sullivan DY. Anterior single-tooth dental implant resto-

rations: now is the perfect time to recall significant con-

tributions. J Esthet Restor Dent 2003: 15: 305–312.

193. Sundh A, Molin M, Sjogren G. Fracture resistance of yt-

trium oxide partially-stabilized zirconia all-ceramic

bridges after veneering and mechanical fatigue testing.

Dent Mater 2005: 21: 476–482.

194. Sundh A, Sjogren G. A comparison of fracture strength of

yttrium-oxide-partially-stabilized zirconia ceramic

crowns with varying core thickness, shapes and veneer

ceramics. J Oral Rehabil 2004: 31: 682–688.

195. Tinschert J, Natt G, Latzke P, Schulze K, Heussen N,

Spiekermann H. Vollkeramische Brücken aus DC-Zirkon –

Ein klinisches Konzept mit Erfolg? Dtsch Zahnärztl Z

2005: 60: 435–445.

196. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusa-

vice KJ. Marginal fit of alumina-and zirconia-based fixed

partial dentures produced by a CAD ⁄ CAM system. Oper

Dent 2001: 26: 367–374.

197. Tischler M. Dental implants in the esthetic zone. Con-

siderations for form and function. N Y State Dent J 2004:

70: 22–26.

198. Tripodakis AP, Strub JR, Kappert HF, Witkowski S.

Strength and mode of failure of single implant all-ceramic

abutment restorations under static load. Int J Prosthodont

1995: 8: 265–272.

199. Tschernitschek H, Borchers L, Geurtsen W. Nonalloyed

titanium as a bioinert metal – a review. Quintessence Int

2005: 36: 523–530.

242

Kohal et al.



200. van Steenberghe D. A retrospective multicenter evalua-

tion of the survival rate of osseointegrated fixtures sup-

porting fixed partial prostheses in the treatment of partial

edentulism. J Prosthet Dent 1989: 61: 217–223.

201. Volz U, Blaschke C. Metal-free reconstructions with zir-

conia implants and zirconia crowns. Quintessence J Dent

Technol 2004: 2: 324–330.

202. Vult von Steyern P. All-ceramic fixed partial dentures.

Studies on aluminum oxide- and zirconium dioxide-based

ceramic systems. Swed Dent J Suppl 2005: 173: 1–69.

203. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed

partial dentures designed according to the DC-Zirkon

technique. A 2-year clinical study. J Oral Rehabil 2005: 32:

180–187.

204. Wagner W, Tetsch P, Bossler L. Prior clinical experience
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