Post-doctoral Fellowship (M/F)

Title of the project: **FOLSMART - Folate-Target Nanodevices To Activated Macrophages For Rheumatoid Arthritis**

Internal Reference: PR251504

We are recruiting a highly motivated postdoctoral fellow to join the Cell Activation and Gene Expression research group at the IBMC/i3S. The work will involve, among other tasks, the *in vitro* differentiation and activation of macrophages; to accurately model the desired biological effect of a drug in animal models, in order to predict treatment outcome in rheumatoid arthritis patients; and to assess *in vitro* the genotoxicity and toxicology of novel folate-based nanodevices.

Requirements: To be eligible for the position as postdoctoral research fellow, the applicant must have a PhD in Immunology, Biomedical Sciences or similar, have good knowledge on Cellular and Molecular Immunology and on Inflammation, and should preferentially have practical experience from previous research in cell culture, leukocyte signal transduction, protein biochemistry, high resolution microscopy, laboratory animal science, all preferably evidenced by excellent publications in the field.

The applicant must be willing to work as part of an interdisciplinary and international consortium focused on working on drug therapy. Finally, the applicant must be able to demonstrate excellence in written as well as spoken English.

Work plan: The successful applicant will be working within the H2020-funded FOLSMART project that brings together a multidisciplinary team of researchers from different EU Member States. The overall aim of FOLSMART is to bring to phase I clinical trials novel folate-based nanodevices for the treatment of rheumatoid arthritis (please see Abstract).

Location: The work will be developed at the Cell Activation & Gene Expression laboratory of the IBMC, i3S, under the supervision of Alexandre Carmo.

Duration: to start on the 1st of February 2016, until the end of 2019, pending annual reviewing and evaluation.

Selection method: The candidates will be listed according to their CV (100%) and the requirements of the call. If necessary, the pre-selected top candidates will be interviewed (interview 75% and CV 25%).

Jury: President: Alexandre Carmo (DPhil); Members: Alexandra Moreira (DPhil) and Sandra Sousa (PhD). Substitute: João Relvas (PhD).

Form of notification of results: The final results of the evaluation will be publicized in the IBMC Web site, through a list sorted by final score, and the selected applicant will be notified by email.
Application deadline and submission forms: The call will be open from 8th until 21st January 2016. Proposals must include CV, motivation letter and indication of two referees. Applications must be done by online submission:

Abstract

FOLSMART will bring to phase I clinical trials novel folate-based nanodevices (FBN) for the treatment of rheumatoid arthritis (RA). These nanodevices for folic acid (FA)-mediated targeting of activated macrophages showed improved clinical scores in a mouse model of RA when compared to methotrexate (MTX), a first-line drug therapy for the treatment of RA. In this way, FBN will be benchmarked against this drug. MTX has significant associated toxicity and second line biological therapies poses a great economic burden to hospital/public health systems. In parallel, nanodevices encapsulating Sulfasalazine (SSZ), will be tested. SSZ is a second line indication for the treatment of RA, unresponsive to MTX or MTX-intolerant patients. Furthermore, FOLSMART propose the optimization of mechanisms for the release of the drugs, through pH and temperature sensitive nanodevices. An exploitation and business plans will be elaborated. In parallel, initial economic evaluation of all proposed treatments will be performed to validate these claims.

Specific technological objectives of FOLSMART will be:

Good Manufacturing Practice (GMP) production of the FBN based therapies which have been positively bench-marked in the previous FP7 European project NANOFOL in comparison with the use of MTX in a RA mouse model:
- Liposomal MTX and SSZ with FA-“neck domain” peptide as targeting agent
- Nanoparticles from HSA-FA/MTX conjugates and SSZ
- Optimization of mechanisms of drug release and application to other fields
Pre-clinical development on RA models
- Toxicology and pharmacokinetics, to determine tolerability and efficacy benefit in two animal models rat and dog, under Good Laboratory Practice (GLP) standards
- Genotoxicity and Carcinogenicity
Phased I clinical trials of the best therapies bench marketed against MTX
- Nanodevices with MTX and SSZ will offer improved tolerance and greater efficacy meaning that patients who do not do well on MTX will have cost-effective alternatives