

Oryzalin liposomal formulations as antileishmanial agents: Characterization, *in vitro* and *in vivo* evaluation

Lopes R, Carvalheiro M, Eleutério CV, Corvo ML, Almeida AJ, Cruz MEM

iMed.UL- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade Lisboa

> Workshop Antiparasitic and Antitumor drugs, 8 and 9 of September 2011, IBMC, Porto, Portugal

Leishmaniasis – Treatement

Currently there is exists **no effective vaccine** against Leishmaniasis and chemotherapy remains to be the only option.

Current therapeutic options limited by toxicity, resistance, long course or high cost.

Richard JV and Werbovetz KA, (2010) Curr Opin Chem Biol; 14(4):447-55, Romero and Morilla, (2008) Expert Opin. Drug Deliv. 5(7):805-823.

FACULDADE DE FACULDADE DE FARMÁCIA

The Drug - Oryzalin (ORZ)

ORZ is a dinitroaniline widely used in agricultural practice as an herbicide.

Toxoplasma gondii

Plasmodium falciparum

L. pananensis (mucocutaneous)

Water solubility (mg/L) at 25 °C 2.5 @ pH= 7

Dinitroaniline therapeutic use is limited at therapeutic doses, in a vehicle suitable for i.v. administration.

Chan, et al., Proc. Natl. Acad. Sci. USA 90 (12) (1993) 5657–5661. Bhattacharya et al., Bioorg. Med. Chem. Lett. 2002, 12, 2395–2398. Armson *et al.*, 1999, Traub-Cseko *et al.*, 2001, Fennel et al., Expert Opin. Drug Discov. (2008) 3(5):501-518

Liposomes & Solid Lipid Nanoparticles

Lipid vesicles made from a phospholipids bilayer surronding a aqueous core.

Lipid particles made from a solid lipid core stabilized by a surfactant interfacial region.

Used as drug carriers and loaded with a great variety of molecules:

small drug molecules, proteins, nucleotides and even plasmids.

Control and/or target drug release.

Improved stability of pharmaceuticals.

Excellent biocompatibility.

Objective: Perform a systematic and comparative study of 2 drug delivery systems of lipidic nature (Liposomes and Solid Lipid Nanoparticles) for improvement of ORZ performance

Construction of <u>Liposome as delivery systems</u> for the incorporation of ORZ

Stability studies of ORZ liposomal formulations

- \odot In suspension
- $\circ\,$ freeze-dried and
- $\ensuremath{\circ}$ sterilization by autoclaving

FACULDADE DE FACULDADE DE FARMÁCIA

ORZ Liposomal Formulations

Phospholipids:

Dimyristoyl phosphatidylcholine (**DMPC**), Dimyristoyl phosphatidylglycerol (**DMPG**) Dipalmitoyl phosphatidylcholine (**DPPC**), Dipalmitoyl phosphatidylglycerol (**DPPG**)

Preparation Method: Dehydration–Rehydration Vesicles (DRV)

ORZ Liposomal Formulations - Stability and Sterilization Studies

Liposomal formulation was **pharmaceutically stable** in suspension at room temperature and **may be lyophilised or autoclaved** without significant variations on its physicochemical proprieties or significant reduction in ORZ incorporation

Results – ORZ Liposomal Formulations

In vitro evaluation

- \circ Heamolysis
- Cytotoxicity (THP-1 cells)
- \circ Internalization assays
- \circ Intracellular activity

In Vitro Assays - Haemolysis and Cytotoxicity

Free-ORZ had a boghsicket at bleich afferet ly thid Halt in the (ILH (CGC of 619424 NM)).

U When incorporated in liposomes, no byter tooly size we rebe breedeat at a concentration super to 050,00 M.M.

In Vitro Assays - Cellular association assay

Diresentecofage Zrince heltipessone bibayes there as do hearth at an association after 4h incubation.

□ Significant increase (p<0.05) in cellular association at 37 °C (4h incubation).

In Vitro Assays - Internalization assay

□ Fluorescence was found in the cell cytoplasm as red fluorescent spots.

In Vitro Assays - Intracellular activity

Formulation		
ORZ in Tween80 5% (v/v)	Free-ORZ	
DMPC:DMPG:ORZ (7:3:1)	Lip-ORZ	

THP-1 cell line infected with *L.infantum*

Incubation with Lip-ORZ and Free-ORZ Count of infected cells in 100 cells

□ Both Free-ORZ and Lip-ORZ reduced the number of THP1 infected cells.

□ Only LIP-ORZ was active at non toxic concentrations

 $IC_{50} = 24.3 \ \mu M \ Free-ORZ$

 IC_{50} = 8.2 μM Lip-ORZ

Results – ORZ Liposomal Formulations

In vivo evaluation

- $\,\circ\,$ Blood profile and biodistribution
- \odot The rapeutic activity in $\it in~vivo$ animal model

In Vivo Assays - Blood Profile

Time After Administration (h)

In Vivo Assays - Biodistribution

□ LIP-ORZ showed a **3 and 4 fold higher accumulation in liver and spleen**, respectively, as compared with the Free-ORZ

Maximum accumulation observed 2 h post-administration

In Vivo Assays - Therapeutic activiy in vivo

L. Infantum IHOM/PT/89/IM1	Infection 10 ⁷ promast/mouse (i.v.)	BALB/c	Treatment (5 da 8 days post-infectio	ys) Spleen and Liver	LDA 3 days post-treatment	Promastigote counting
	Treatmen	ıt	D	Dose (Adminitration route)		
	Glucantime®	Stb		45 mg/kg	(s.c.)	
DMPC:DMPG:ORZ (7:3:1)		Lip-	ORZ	25 mg/kg	(i.v.)	
	ORZ in Tween80 5% (v/v	/) Free	e-ORZ	25 mg/kg	; (i.v.)	

□ All treatments significantly reduced parasitic burden in the liver and spleen.

□ In the liver LIP-ORZ was more active than the Free-ORZ and Stb.

□ Liposomal formulations containing ORZ were optimized (preparation method, lipid composition and experimental conditions).

□ These liposomal formulations are **stable** in different storage conditions (suspension, freeze-dried and sterilized by autoclaving)

□ ORZ incorporation in liposomes proved to **reduce haemolysis** of red blood cells and **cytotoxicity** in THP1 cells observed with free ORZ while **improving** its intracellular activity.

□ *In vivo* studies demonstrated the efficacy of the liposomal formulation to **target ORZ** to the main organ of leishmanial infections (liver and spleen).

□ ORZ incorporation **improved** the *in vivo* activity (visceral model of infection) by reducing the parasitic burden in the **liver and spleen.**

ORZ liposomes are promising formulations as therapeutic agents against leishmaniasis

Further studies include search of new treatment schedules and comparision with similar ORZ Solid lipid nanoparticles formulations.

Acknowledgements

Faculdade de Farmácia, Universidade de Lisboa (Departamento de Tecnologia Farmacêutica)

Eugénia Cruz António J. Almeida Manuela Carvalheiro Luísa Corvo Manuela Gaspar Carla Eleutério

iMed.UL-Research Institute for Medicines and Pharmaceutical Sciences

School of Medicine, University of Crete

Effie Scoulica – *In vitro* studies

<u>Centro de Neurociências e Biologia Celular (</u>CNC), Universidade de Coimbra

Laboratório Nacional de Energia e Geologia Alexandra Esteves

Fundação para a Ciência e a Tecnologia

This work was partially supported by FCT (PTDC/CVT/098290/2008). Rui Lopes was recipient of a FCT grant (SFRH/BD/44218/2008)

ORZ Solid Lipid Nanoparticles

Med.ULL RISLARCH INSTITUTE FOR MEDICINES

□ SLN formulations with tripalmitin as the lipidic component were developed

Stability studies of ORZ liposomal formulations

- In suspension
- freeze-dried and
- sterilization by autoclaving

□ Cell viability studies demonstrated that the incorporation of ORZ in SLN decreases the drug cytotoxicity

□ The uptake and intracellular localization of rhodamine labeled SLN was confirmed by fluorescence microscopy.

Thank you for your attention

Various liposomal formulations developed against Leishmaniasis – Current treatments

Drug Entrapped	<u>Animal Model</u>	<u>Reference</u>
Meglumine antimoniate and Sodium stibogluconate	L.donovani (golden hamsters)	Alving <i>et al., (</i> 1978)
Meglumine antimoniate	<i>L.donovani</i> (dogs)	Chapman <i>et al.,</i> (1984)
Amphotericin B	L.donovani (hamsters)	Berman et al. (1986)
Amphotericin B	L.infantum (naturally infected dogs)	Oliva <i>et al.,</i> (1995)
Miltefosine	L.donovani	Escobar <i>et al., (</i> 2001)
Meglumine antimoniate	L.Chagasi (naturally infected dogs	Ribeiro <i>et al.,</i> (2008)
Amphotericin B	L.donovani (BALB/C mice)	Burerjee <i>et al.,</i> (2008)

Various liposomal formulations developed against Leishmaniasis – New drugs

Drug Entrapped	<u>Animal Model</u>	<u>Reference</u>	
Atovaquone	L.infantum (mice)	Cauchetier et al., 2000	
Camptothecin	L.donovani (Balb/C mice)	Proulx et al., 2001	
Piperine	L.donovani	Raay et al., 1999	
Trifluralin	L.infantum (dogs)	Marques et al., 2008	
Trifluralin	L.donovani (Balc/C mice)	Carvalheiro et al., 2009	

Leishmaniasis-Neglected Disease

□ Leishmaniasis is a parasitic disease classified as Neglected Diseases by WHO*.

Leishmania promastigotes

Macrophage infected with Leishmania amastigotes

□ The protozoa are transmitted by the bite of the

phlebotomine sandfly.

Leishmaniasis presents in three clinical forms:

Cutaneous, Mucocutaneous and Visceral

Leishmaniasis present in 88 countries (12 millions infected worldwide).

Endemic in all southern countries of Europe.

Currently there is exists **no effective vaccine** against Leishmaniasis and chemotherapy remains to be the only option.

WHO: World Health Organization

Leishmaniasis – Current Treatments

First Line Treatment

Pentavalent Antimonials

Meglumine Antimoniate (Glucantime) Sodium stibogluconate (Pentostam) Toxicity, Long course treatments; Painful injection; Resistance

Second-line treatment

Amphotericin B

Intravenous infusion Dose-limiting toxicity

Paromomycin

Raised liver enzymes, Toxicity Injection site pain

Miltefosine

Teratogenicity; Long half life (potential for resistance) Toxicity,

Liposomal Amphotericin B

High cost of treatments

Current therapeutic options limited by toxicity issues and the need of long course treatments.

http://www.who.int/medicines/publications/essentialmedicines/en/index.html

Griensven J. et al., The Lancet Infectious Diseases, Vol10, (3),184 - 194, 2010

<u>Drug Delivery</u> <u>System</u>	Drug Entrapped	<u>Animal Model</u>	<u>Reference</u>
Niosomes	Amphotericin B	L. donovani (BALB/c mice)	Mullen et al., (1997)
Emulsions	Piperine	L. donovani (BALB/c mice)	Veerareddy et al., (2004)
Polymeric Particles	Amphotericin B	L. infantum (hamsters)	Sanchez-Brunete et al., (2004)
Liposomes	Miltefosine	L.donovani	Escobar <i>et al., (</i> 2001)
	Meglumine antimoniate	<i>L.Chagasi</i> (naturally infected dogs	Ribeiro <i>et al.,</i> (2008)
	Amphotericin B	L.donovani (BALB/C mice)	Burerjee <i>et al.,</i> (2008)
	Atovaquone	L.infantum (mice)	Cauchetier et al., 2000
	Trifluralin	L.donovani (Balc/C mice)	Carvalheiro et al., 2009