

The discovery of thiadiaza derivatives as pteridine reductase inhibitors against Trypanosomatidae infections.

Maria Paola Costi University of Modena and Reggio Emilia Italy

New Indigo Workshop: Antiparasitic and Antitumour drugs | 8 and 9 of September 2011, Porto, Portugal

Classical Antifolates do not work properly against Leishmania parasites.

EXPERIMENTAL PARASITOLOGY 87, 157–169 (1997)

Biochemical and Genetic Tests for Inhibitors of Leishmania

Pteridine Pathways

L. W. Hardy,* W. Matthews,* B. Nare,†,1 and S. M. Beverley†,2

*Department of Pharmacology and Molecular Toxicology and Program in Molecular Medicine, Biotech 2, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, U.S.A.; and †Department of Biological Chemistry and

Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, U.S.A.

Leishmania exhibit many unusual features in pteridine metabolic pathways which are essential for growth, suggesting that these should be excellent targets for chemotherapeutic attack (summarized in Nare *et al.* 1997a). However, unlike some other protozoal infectious diseases where antifolates such as pyrimethamine, sulfa drugs, and trimethoprim have enjoyed success (Ferone 1984; Grossman and Remington 1979; McDougald 1982), effective antifolate chemotherapy has not been achieved in infections by *Leishmania*, despite this parasite's extreme divergence from the host.

Either or both of the *PTR1* and *DHFR-TS* genes are often found to be amplified in methotrexate (MTX) resistant lines. Investigations of the genes and enzymes identified by studies of antifolate resistance have provided important beginnings for efforts to develop effective antifolate chemotherapy and to understand why previously tested inhibitors did not work.

Folate pathway: which proteins can be considered as validated targets?

Folate pathway in Trypanosomatidae

PTR1 mechanism

BH₄

Additional enzymes in the BTs metabolism

Enzymes and metabolic pathways in *T. brucei* and *L. major*. Enzymes present in both parasites are shown in *green* and enzymes only present in *L. major* are shown in *blue*. The *dotted lines* indicate pterins that can be taken up from the medium.

Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. <u>J Biol Chem.</u> 2011 Mar 25;286(12):10429-38. Epub 2011 Jan 14.<u>Ong HB</u>, <u>Sienkiewicz N</u>, <u>Wyllie S</u>, <u>Fairlamb AH</u>.

Strategies for the pursuit of drugs to treat neglected tropical diseases.

- (A) **label extension**, extending the indications of existing drugs for other conditions to tropical diseases;
- (B) piggy-back discovery, in which the discovery of new drugs is focused on one or a few classes of well-studied and validated targets; and
- (C) de novo drug discovery.

These strategies collectively seek to exploit two possible sets of drug targets: those that have been validated in other organisms and diseases, and those that have not – perhaps because they are unique to neglected-disease pathogens – but that nevertheless have potential as novel sites of action.

PLoS Negl Trop Dis. 2010 Aug 24;4(8):e804.

Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. <u>Crowther GJ</u>, <u>Shanmugam D</u>, <u>Carmona SJ</u>, <u>Doyle MA</u>, <u>Hertz-Fowler C</u>, <u>Berriman M</u>, <u>Nwaka S</u>, <u>Ralph SA</u>, <u>Roos DS</u>, <u>Van Voorhis WC</u>, <u>Agüero F</u>.

Table 2 Preliminary	genome-wid	e prioritization of <i>Leishmania major</i> targets.	
Ranking	Gene_name	Gene product	Weight
1 C1.	LmjF29.0820	cysteine peptidase C (CPC),CPC cysteine peptidase, Clan C/ Cathepsin B-like	A, family 416
2	LmjF05.0350	trypanothione reductase	386
2	LmjF06.0860	dihydrofolate reductase-thymidylate synthase	386
2	LmjF23.0050 386	cyclophilin, putative,peptidyl-prolyl cis-trans isomerase, put	ative
2	LmjF25.0910	cyclophilin a	386
2	LmjF06.0120	cyclophilin	386
2	LmjF18.0270	protein kinase, putative,glycogen synthase kinase, putative	386
8	LmjF36.1960 366	phosphomannomutase, putative	
8	LmjF23.0270	pteridine reductase 1	366
10	LmjF30.2970	glyceraldehyde 3-phosphate dehydrogenase, glycosomal	351
10	LmjF12.0220 351	hydroxyacylglutathione hydrolase, putative,glyoxalase II, pu	tative
10	LmjF24.0850	triosephosphate isomerase	351
13	LmjF27.1870	trypanothione synthetase, putative	341
13	LmjF06.0560	deoxyuridine triphosphatase, putative,dUTP diphosphatase	341
15	LmjF21.0250	hexokinase, putative	336
15	LmjF25.1320 336	serine/threonine protein phosphatase, putative	
15 Family	LmjF19.0550 M24 336	methionine aminopeptidase, putative,metallo-peptidase, Cla	n MG,
15	LmjF34.1260	mitochondrial DNA polymerase I protein A, putative	336
15 15	LmjF30.0880 LmjF33.1630	adenosine kinase, putative 336 cyclophilin, putative 336	

Aims

The aim is to identify new lead compounds tackling the folate pathway, active against Leishmania parasites (and Trypanosomes), non toxic against human cells.

Expected biological properties of the new compounds are

SPECIFICITY enzymes absent

in human cells

SELECTIVITY

Enzymes present in human cells but quite different structure

Targeting essential proteins or suitable for combination therapy

PTR1 structure

Gourley DG, Hunter WN et al. nature structural biology • volume 8 number 6 • june 2001

Primary structure of PTR1s

Colored box: less than 4° from the substrates Boxes: residues conserved in all species

Ptr1 inhibition

Currently, no drugs are known to target this enzyme validated inhibitors exist and known drugs such as methotrexate and pyrimetamine

R= H: 2,4-diaminopteridine R= CH3: 6-methylpteridine-2,4-diamine

2,4-diaminopyrimidine

 ${}^{a}K_{i}$ app and Hill slopes are averaged over at least two independent measurements.

R.Brenk et al, J. Med. Chem. 2009, 52, 4454-4465

Conclusions by Beverly's work

Several significant conclusions resulted:

(1) potent inhibition of PTR1 alone is insufficient for growth inhibition, in Leishmania

(2) depletion of intracellular PTR1 levels sensitizes the parasites to growth inhibition

Proof of concept through library screening strategy

We have identified a folate-like analog class

low nanomolar PTR1 inhibition constant (Ki) and

- high resistance index against PTR1 overexpressing Leihmania major parasites
- low efficacy alone against the amastigote form of Leishmania major almost synergize the activity of Pyirimetamine.
- Lower toxicity against human cells. This compound class is under development.

Cavazzuti A, Cosi MP et.al. PNAS, 2008

889R

*K*i 7 μM *Tc*PTR1 *K*i 100 nM *Lm*PTR1 *K*i 4 μM *Lm*DHFR *K*i 10 μM *h*DHFR
NI at 190 μM vs hTS, LmTS-DHFR

*K*i 110 nM *Tc*PTR1 *K*i 180 nM *Lm*PTR1 *K*i 130 pM *Lm*DHFR *K*i 3.4 pM *h*DHFR *K*i 600 nM *Lm*TS

Compound 889R is very active against LmPTR1 and 100 times less active against the human enzyme (hDHFR). It is active against amastigote form of Leishmania major in combination with pyrimetamine (PYR). PYR is a DHFR inhibitor.

The binding mode is crucial for specificity

Medicinal chemistry program

• <u>Hit identification:</u>

Virtual screening + Enzymatic assays + Scaffold identification and validation

X-ray structure

• <u>Hit to Lead:</u> Design, synthesis and biological evaluation of thiadiazole compound library + Molecular Modelling (to explain exp data, to suggest new derivatives (GRID)) +

S.Ferrari, Costi MP et al JMedChem, 2010

LmPTR1 IC50

virtual	ACD database	~ 3	50000	
screening	structure-based virtual screening: LUDI		21394	
	filtering 1: % contacts, number of H bonds,	calculated score	724	
	filtering 2: visual comparison to LmPTR1 a number and type of interactions	nd hDHFR,	93	
in vitro tests	in vitro testing: LmPTR1, LmDHFR, hDHF	R	53	
	active against LmPTR1		6 Iead 1	0.39- 5.6 mM 5.6 mM

 NH_2

 H_{2N} H_{2N}

53 COMPOUNDS WERE from the Virtual Screening Library AND TESTED AGAINST enzyme bio-library

6 COMPOUNDS SHOWED INHIBITION ACTIVITY WITH Ki 90-600 μM

lead 1 (2-amino-1,3,4-thiadiazole)

Leishmania major (1E92)

Docking model of Lead 1 with LmPTR1

LmPTR1 IC50

virtual	ACD database		~ (350000	
screening	structure-based	I virtual screening: LUDI		21394	
	filtering 1: % co	ntacts, number of H bonds,	calculated score	724	
	filtering 2: visua numb	I comparison to LmPTR1 and type of interactions	nd hDHFR,	93	
in vitro tests	in vitro testing:	LmPTR1, LmDHFR, hDHFI	२	53	
	active against Ln	nPTR1		6 lead 1	0.39- 5.6 mM 5.6 mM
derivates of	designing and sy	nthesis of derivates of lead	1	26	
lead 1	testing of derivat	es of lead 1		7	22 – 309 µM

LmPTR1 IC50

virtual	ACD database			~	~ 350000	
screening	structure-based	l virtual scree	ning: LUDI		21394	
	filtering 1: % co	ntacts, numbe	r of H bonds,	calculated scor	e 724	
	filtering 2 : visual comparison to LmPTR1 and hDHFR, number and type of interactions			nd hDHFR,	93	
in vitro tests	in vitro testing: LmPTR1, LmDHFR, hDHFR			२	53	
	active against Ln	nPTR1			6 lead 1	0.39- 5.6 mM 5.6 mM
derivates of	designing and sy	nthesis of deri	vates of lead	1	26	
lead 1	testing of derivat	es of lead 1			7	22 – 309 µM

Enzymatic assays of 2-amino-thiadiazole derivatives

From scaffold to lead?

LmPTR1 IC50

virtual	ACD database			~ 350000	
screening	structure-based virtual screening: LUDI			21394	
	filtering 1: % co	ntacts, number of H bon	ds, calculated sco	ore 724	
	filtering 2: visual comparison to LmPTR1 and hDHFR, number and type of interactions			93	
in vitro tests	in vitro testing:	LmPTR1, LmDHFR, hDI	HFR	53	
	active against Ln	nPTR1		6 lead 1	0.39- 5.6 mM 5.6 mM
derivates of	designing and sy	nthesis of derivates of le	ad 1	26	
lead 1	testing of derivat	es of lead 1		7	22 – 309 µM
computational drug design	docking of derivation discrimination	ates of lead 1 ation between active and	inactive is possik	ole 26	
	comparison of do	ocking poses and MIFs			

Suggest for further lead development GRID

Leishmania major PTR1 X-ray crystal structures:

2bfa

	1E92	2BF7	2BFA	1W0C	2BFM	2BFP	1E7W
1E92							
2BF7							
2BFA							
1W0C							
2BFM							
2BFP							
1E7W		RMS) <3/	Ă <5,	Ă <mark>></mark> 5	Ă	

receptor

Classical docking couldn't score well the experimental inhibition data.

Improving the docking results and dock scoring using conserved water molecules for docking.

comparing water molecules given in the crystal structures using cluster analysis (WatCH)

➡ 4 conserved water molecules close by the active site

Compound Design

Molecular probing: identification of favourable binding site for specific probes (H2O, CH3, aromatic, OH, COOH, NH2, NH3+....) (GRID, all pdb structures)

Hydrophobic

Hydrophilic

LmPTR1 IC50

virtual	ACD database		~ (350000	
screening	structure-based virtual s	creening: LUDI		21394	
	filtering 1: % contacts, nu	mber of H bonds,	calculated score	724	
	filtering 2: visual compari number and ty	son to LmPTR1 ar pe of interactions	nd hDHFR,	93	
in vitro tests	in vitro testing: LmPTR1	LmDHFR, hDHFF	र	53	
	active against LmPTR1			6 lead 1	0.39- 5.6 mM 5.6 mM
derivates of	designing and synthesis o	f derivates of lead	1	26	
lead 1	testing of derivates of lead	1		7	22 – 309 µM
computational drug design	docking of derivates of lead but no discrimination betw	d 1 een active and ina	ctive is possible	26	
	comparison of docking pos	ses and MIFs			
	design of lead 2				
in vitro tests	vitro testing of lead 2			lead 2	1.8 mM
derivates of	design derivates of lead 2]		4	
lead 2	testing derivates of lead 2			4	40 – 1000 µM

Testing of the best compounds from Lead 1 and Lead 2 aginst Leishmania parasites

Hopping to a new compound class:benzothiazoles

Lead 1 vs Lead 2 *L. major* PTR1

No inhibition of *L. major* DHFR or human DHFR From virtual screening on known and available compounds we may identify conventional drugs showing off target or out target effects

Database Search

Pramipexole Parkinson, restless legs syndrome Dopamine agonist H_3C

Patent CA 2492832

HIV protease inhibitor

Patent US 6,407,122 B1

Treatment of neurodegenerative

disorders

Code	Structure	LmPTR1 IC ₅₀ (µM) [Ki (µM)]	LmDHFR IC58 (µM)	hDHFR IC ₅₀ (µM)
4 a	HUN S	5600 [436]	NI*	NI ^b
6a	Č.	1900	NI*	NIª
28a	нкQ	1100	2000ª	NI ⁴
35a	HAN CH-	1000	NI ⁴	NI^d
38a	, do	390	NI*	NI [*]
53a	3-0-	2300	NI	NI ⁴
7ь	HAN T SHAN	31 [2]	$\mathrm{NI}^{\mathfrak{c}}$	\mathbf{NI}^{ϵ}
14b	NAN S-ONN	309 [24]	$\mathrm{NI}^{\mathfrak{c}}$	NI ^c
15b	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22 [2]	1300	NI ⁴
21b	The state	29 [2]	139*	300
22b	J. S. C.	89 [7]	NI ^c	NI ^r
28b	~~~	93 [7]	NI^{ϵ}	NI [*]
29ь	quitte	116 [9]	NI ^c	NI ^{ca}
1¢	H,H-STO	1800 [143]	NI	NI*
2e	HAN- AND	1000 [79]	1390 ^a	NI*
3e	HJN-STOT NO2	40 [3]	NI"	89 ^e
4e	14-50×	212 [16]	1780*	1040ª
5e	H_H-A-CF1	50 [4]	$\mathrm{NI}^{\mathfrak{d}}$	312*

/

Benzothiazoles

Antiparasitic activity against Lmajor and Lmexicana

Growth of L. mexicana (in black) and L. major (in gray) parasites in the presence of 30 µg/mL 1 and/or thiadiazole/ benzothiazole compounds at a concentration of 50 µg/mL. The growth values are expressed as percentages calculated with respect to the growth of parasites without 1 and thiadiazole/benzothiazole compounds

Biological studies on Riluzole

Riluzole shows similar activity in both *Leishmania* and no synergic effect appears when used in combination with Pyrimethamine

NADPH reduction in *Leishmania* Lysate – substrate: biopterin

L.major			L.mexican	a proma	stigotes
	%	±		%	±
Ctrl	100	0	Ctrl	100	0
Rilu	3.6	1.6	Rilu	3.5	1.0

L.mexicana amastigotes				
	%	±		
Ctrl	100	0		
Rilu	25.0	8.7		

NADPH reduction after incubation with Rilu (IC50conc) treated *Leishmania* Lysate

Rilu keeps its inhibitory activity after 48h cell treatment, most notably reduction appears when using Biopterin as substrate

1. Increase of oxidative stress sensitivity on *Leishmania.* 48 h pretreatment with Rilu

45 minutes of Peroxide Exposure

45 minutes of Peroxide Exposure

Parasites treated with Rilu are more sensitive to oxidative stress

2. Effect of Riluzole on PTR1 expression.

PTR1 expression is not affected by 48 hours treatment with Rilu. PTR1 levels are increased in amastigote-like parasites with respect to promastigotes.

STRUCTURAL STUDIES

Attempts to obtain the X-ray crystal structures of the thiadiazole derivatives with LmPTR1, failed, then we obtained the structure with PTR1 from Tbrucei.

E.Nerini, W.Hunter, MP Costi, P.Michels in prep.

Compounds	IC ₅₀ in <i>T.brucei</i> (µg/ml)	IC ₅₀ in mam.cells (µg/ml)
WH6	44.14 ± 1.54	23.34 ± 3.93
WH16	5.78 ± 0.57	4.18 ± 0.43
WHF17	No effect	No effect
WHF18	44.84 ± 3.81	43.03 ± 5.15
WHF22a	46.07 ± 2.09	57.13 ± 3.79
WHF22b	36.79 ± 3.81	51.50 ± 5.52
WHF30	No effect	34.36 ± 3.72
Riluzole	26.74 ± 1.23	27.88 ± 3.17
PYR	0.82 ± 0.03	16.23 ± 2.47

No effect: IC₁₀ was not reached at the highest concentration tested (100 µg/ml).

X-RAY CRYSTALLOGHRAPHY WHF30-Trypanosoma brucei X-ray complex

Active site of *Tb*PTR1. Compound WHF30, through its thiadiazole ring, is sandwiched between the nicotinamide ring of cofactor NADPH and Phe97.

Compound WH16 in the active site of TbPTR1 and its interactions with the enzyme. The thiadiazole ring is responsible of the main interactions. Distance with the two water molecules and Tyr174 are in red dashed lines. WH16 is in pink sticks, the enzyme is green sticks, both are coloured by atom types.

PyMOL for evaluation only. Contact sales@delsci.com.

Key interactions are conserved and confirm the proposed finding by J.Mol.Mod2011, Dube D. in Pharmacofore studies on PTR1 ligands.

Conclusions

We have identified two classes of compounds that inhibit specifically PTR1 in the micromolar range (no DHFR or human enzymes inhibition). Some of them are not toxic against MRC5 human cells.

We have confirmed the initial finding that specific inhibiton of PTR1 can be synergistic with DHFR inhibition.

Potentially Pyrimetamine can be used as a drug also in Leishmania, in combination with PTR1 inhibitors.

Same compounds inhibit Lm parasites in sinergy with PYR, while no synergy is observed in T.brucei inhibition. Riluzole and its derivatives can be explored as drug candidates (LABEL EXTENSION?).

Acknowledgement

Rebecca Wade Stefan Henrich MCM group members

former group members: Domantas Motiejunas

M. Paola Costi Stefania Ferrari Erika Nerini Federica Morandi Rosaria Luciani Alberto Venturelli Sandra Lazzari S. Calò

Shreedhara Gupta Veronique Hannaert Paul A. M. Michels

Virtual Screening Docking Molecular Probing Library Design and Selection Virtual Screening 1st Library Design Synthesis Enzymatic Assays Parasitology Human Cell Model Toxicity

- MIUR (Minister of Italian Research) mobility grant.
- Internationalization grant "Kinetodrugs" funded by CRM foundation, Modena-Italy 2008-2010
- COST Action STMS-COST B22 and COST CM0801.